
Journal of Computational Physics 229 (2010) 6450–6465
Contents lists available at ScienceDirect

Journal of Computational Physics

journal homepage: www.elsevier .com/locate / jcp
A numerical simulation method for dissolution in porous
and fractured media

D. Yu, A.J.C. Ladd *

Department of Chemical Engineering, University of Florida, Gainesville, FL 32611-6005, USA
a r t i c l e i n f o

Article history:
Received 9 October 2009
Received in revised form 7 May 2010
Accepted 11 May 2010
Available online 19 May 2010

Keywords:
Dissolution
Porous media
Lattice-Boltzmann
Finite-difference
0021-9991/$ - see front matter � 2010 Elsevier Inc
doi:10.1016/j.jcp.2010.05.005

* Corresponding author. Fax: +1 652 392 9513.
E-mail address: ladd@che.ufl.edu (A.J.C. Ladd).
a b s t r a c t

We describe an algorithm for simulating reactive flows in porous media, in which the pore
space is mapped explicitly. Chemical reactions at the solid–fluid boundaries lead to disso-
lution (or precipitation), which makes it necessary to track the movement of the solid–fluid
interface during the course of the simulation. We have developed a robust algorithm for
constructing a piecewise continuous (C1) surface, which enables a rapid remapping of
the surface to the grid lines. The key components of the physics are the Navier–Stokes
equations for fluid flow in the pore space, the convection–diffusion equation to describe
the transport of chemical species, and rate equations to model the chemical kinetics at
the solid surfaces. A lattice-Boltzmann model was used to simulate fluid flow in the pore
space, with linear interpolation at the solid boundaries. A finite-difference scheme for
the concentration field was developed, taking derivatives along the direction of the local
fluid velocity. When the flow is not aligned with the grid this leads to much more accurate
convective fluxes and surface concentrations than a standard Cartesian template. A robust
algorithm for the surface reaction rates has been implemented, avoiding instabilities when
the surface is close to a grid point. We report numerical tests of different aspects of the
algorithm and assess the overall convergence of the method.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

The transport of reactants in porous media is a fundamental geochemical problem [1,2], with growing relevance to
sequestration of excess carbon dioxide [3,4]. Aqueous CO2 is a weak acid which gradually erodes alkaline mineral formations,
particularly limestone. Fluid flow through the porous matrix introduces carbonic acid (H2CO3), which dissolves the sur-
rounding solid. However the increase in porosity is non-uniform and under some conditions the flow gradually becomes fo-
cused into a small number of long channels [5]. Flow focusing is a possible mechanism underlying the formation of limestone
caverns [6] and is also important in estimating geological confinement times for stored CO2 [7]. Most numerical work in
modeling dissolution of porous media has been at the Darcy scale [8,9], while similar models, based on a two-dimensional
Reynolds approximation, have been applied to fracture dissolution [7,10]. However it is now becoming feasible to incorpo-
rate detailed microscopic pore structures [11,12], particularly with the growing use of lattice-Boltzmann methods [13–15],
which are well suited to complex geometries. In this paper we propose a number of algorithmic improvements, and in par-
ticular a more accurate representation of the interface between the solid matrix and the fluid.

The simplest representation of a porous material is to divide the system into cells, with each cell being either solid or fluid
[14,15]. However, the accuracy of such a scheme is limited, unless a very large number of grid points are used. Such simu-
lations have so far been limited to two-dimensional systems [16]. We have previously developed a lattice-Boltzmann model
. All rights reserved.

http://dx.doi.org/10.1016/j.jcp.2010.05.005
mailto:ladd@che.ufl.edu
http://www.sciencedirect.com/science/journal/00219991
http://www.elsevier.com/locate/jcp

D. Yu, A.J.C. Ladd / Journal of Computational Physics 229 (2010) 6450–6465 6451
that could account for intermediate grid positions [17] and thus allow three-dimensional simulations to be carried out [13].
More recently, we demonstrated that a lattice-Boltzmann flow solver [18] and a random-walk algorithm for the reactant
transport [19,20] can simulate erosion on the scale of laboratory experiments [21], using either numerically generated
[22,23] or experimentally measured [21] topographies. Nevertheless, the method suffers from two significant limitations.

First, the random-walk algorithm required a particularly efficient method for calculating the erosion fluxes [20], which
eliminated the statistical noise from fluctuations in the local concentration at the solid surface [21]. However, this algorithm
is limited to linear kinetics, but it is known that the dissolution of limestone by aqueous CO2 is strongly non-linear, with a
substantial reduction in reaction rate near saturation. A finite-difference method has the advantage that there is no statistical
error and it can be extended to non-linear kinetics. We use finite-difference, in preference to lattice-Boltzmann [24,25,15,26]
and related methods [27,28], in order to utilize upwind differencing at high Péclet numbers. Lattice-Boltzmann methods for
multicomponent transport have not yet implemented upwind differencing, and are thus restricted to relatively low Péclet
numbers. Recent work [26,29,28] has extended the range of Péclet numbers that can be investigated by lattice-Boltzmann
methods, but when concentration gradients are sharp it is difficult to obtain accurate solutions when the grid Péclet number
exceeds 30, which is typically the range where a finite-difference scheme will switch to upwind differencing. By contrast,
simulations of fracture flows can require a grid Péclet number in excess of 100 in order to achieve a computationally prac-
tical number of grid points. The primary concern with a grid-based method is the resolution needed to represent the con-
centration field in sharply varying geometries. We have therefore investigated the convergence of the transport solver in
complex topographies, characteristic of porous media.

The other limitation of our previous work [21,23] is that the surface was represented by two height maps, defining the z
position of each surface as a function of the x,y coordinates. This makes the erosion of the surface much easier to calculate,
but it cannot accurately account for the dissolution of rough topographies, where there may be substantial variations in
height over scales comparable to the pore size. Here we have implemented a full three-dimensional surface representation,
which is robust even with a sharply varying topography. The description of the surface and the algorithm for updating it are
one of the key innovations of this work. The other innovation is an improved finite-difference solver, which leads to accurate
surface concentrations in situations where the standard differencing template does not. The method is fully parallelized and
runs efficiently on a small cluster of up to 100 processors, connected by gigabit Ethernet. The algorithm is described in the
next section, Section 2.

In Section 3 we describe a number of numerical tests of the algorithm. We first present results for the permeability of a
dense random array of spheres, which is used to test the accuracy of the flow solver. Next we calculate the concentration
field in a narrow channel, both aligned with the grid and at an angle to the grid. We compare results for different implemen-
tations of the finite-difference solver with a reference solution obtained with programs from the NAG library [30]. The results
demonstrate the improved accuracy of our finite-difference scheme, which is related to the method of characteristics. We
then illustrate the precision of the surface-update algorithm, using a uniformly expanding and contracting sphere. Finally,
we examine erosion patterns in an artificial fracture, in order to demonstrate the convergence of the method with increasing
resolution of the flow and concentration fields.
2. A computational algorithm for dissolution

A simulation of dissolution in a porous matrix requires three main computational components: fluid flow, reactant trans-
port, and surface erosion. We solve the Navier–Stokes equations in the weak compressible form using a lattice-Boltzmann
model (Section 2.4):
otqþ $ � ðquÞ ¼ 0; ð1Þ

qotuþ qu � $uþ c2
s $q ¼ gr2uþ fþ g

3

� �
$$ � u: ð2Þ
Here q and u are the fluid mass density and velocity, cs is the speed of sound, and g and f are the shear and bulk viscos-
ities. At sufficiently low Mach numbers, M = u/cs � 0.1, these equations are a good approximation to the incompressible
Navier–Stokes equations [31].

Next, the distribution of reactants (and possibly products) must be determined from a solution of the convection–
diffusion equation:
otc þ u � $c ¼ Dr2c; ð3Þ
using the flow field determined by the lattice-Boltzmann simulation. A similar equation can be solved for every species, but
here we consider only a single component, with diffusion constant D. A new approach to discretizing the convection–
diffusion equation is given in Section 2.5.

There are separate grids for the fluid solver and concentration solver, since the resolutions required for each may be dif-
ferent. Typically the Péclet number Pe = Q/AD is larger than the Reynolds number, Re = Q/Am; here Q is the volumetric flow
rate, A is the cross-sectional area of the porous matrix, and m = g/q is the kinematic viscosity of the fluid. Thus although there
is frequently a thin concentration boundary layer, the fluid velocity varies slowly across the pore space.

6452 D. Yu, A.J.C. Ladd / Journal of Computational Physics 229 (2010) 6450–6465
The chemical kinetics at the solid surface serve as a boundary condition on Eq. (3); for a single species:
Fig. 1.
solid bo
Dn � ð$cÞ0 ¼ Rðc0Þ; ð4Þ
where the surface normal, n, points into the fluid and the subscript 0 indicates a position on the surface. The reaction rate,
R(c0), is negative for dissolution, and for linear kinetics is proportional to the undersaturation:
RðcÞ ¼ k c0 � csatð Þ; ð5Þ
where k is the rate constant and csat is the saturation concentration.
Having calculated the fluxes at the solid–fluid surface, the topography of the solid matrix is updated (Section 2.3). In the

applications of interest to us [22,23], the rate of dissolution of the solid is very slow and both the fluid and transport equa-
tions can be assumed to be at steady state for each specific topography. Here we describe the algorithm in these terms, sep-
arately cycling through the flow solver until the velocity field is stationary in time, then iterating the convection–diffusion
equation to steady state, and finally calculating the erosion velocity and updating the surface. However the code can also be
run in fully coupled mode if necessary, for example to simulate fast dissolution by strong acids.

2.1. Representing the solid–fluid interface

The boundary between the solid and fluid phases is described by a set of marker points, which denote all the positions
where grid lines intersect the solid–fluid interface. The initial positions of the marker points are determined by interpolating
a piecewise continuous (C0) representation of the surface. An example of the labeling of the nodes is shown in Fig. 1. Based on
the initial position of the surface, nodes are labeled as solid (open squares) or fluid (open circles) depending on which side of
the interface they are on: Fig. 1 indicates a convex solid surface. Once the solid and fluid nodes are assigned, the neighbor-
hood of each solid node is checked along the Cartesian directions. If fluid nodes are found then the node in question is labeled
as a solid–fluid boundary node (solid squares). The distances to the surrounding marker points (solid diamonds) are recorded
for each boundary node; there is at least such one distance for each boundary node and no more than six. Note that the mar-
ker points are not explicitly defined in the code; the information about their location is stored in the solid boundary node
data structure.

The code allows for different grid resolutions in the fluid solver (coarse grid) and concentration solver (fine grid). This is
useful because there is frequently a concentration boundary layer near the solid surface, while at low Reynolds number the
fluid velocity varies more smoothly. The geometry of the solid–fluid interface is defined on the fine grid but the solid bound-
ary nodes on the coarse grid must be determined separately, as illustrated in Fig. 2. The flow solver uses the D3Q19 lattice-
Boltzmann model, in which additional distances along diagonal directions between each pair of coordinate axes are needed
(Fig. 2). The marker points for the diagonal directions are placed by linear interpolation between cardinal points (see Fig. 2b).

The node map and distances to the marker points are the only geometric data needed by the fluid and concentration solv-
ers. The connections between markers are not needed as long as the surface remains stationary. However the markers move
as a result of erosion and connectivity information is needed to calculate the new marker positions. We use a local repre-
sentation of the surface in terms of triangular Bezier functions, as described in Section 2.3. We have also implemented a
marching cube algorithm [32] to calculate the fluid fraction surrounding each grid point, which is used to determine the local
fluid velocity (Section 3.1).
ab

δ

fluid solid

Solid–fluid surface configuration. The various node types are indicated by different symbols; fluid nodes (open circles), solid nodes (open squares),
undary nodes (filled squares) and surface markers (filled diamonds).

solid

fluid

fluid

solid

Fig. 2. Mapping the geometry from the fine grid to the coarse grid. Note that some solid nodes on the fine grid can turn to solid boundary nodes on the
coarse grid. The additional marker points for the diagonal intersections (open diamonds) are found by interpolating between the cardinal points.

D. Yu, A.J.C. Ladd / Journal of Computational Physics 229 (2010) 6450–6465 6453
2.2. Calculating the surface normals

Surface normals are needed at the marker points, both to determine the direction of the erosion flux, Eq. (4), and to con-
struct third-order Bézier surfaces. A planar triangulation of the surface requires only the coordinates, but a C1 surface needs
the normals as well; they can be calculated from the vector product of tangents to the surface at each marker point. The tan-
gents do not need to be perpendicular to each other, but the accuracy with which the normal can be calculated is degraded if
they are nearly parallel.

A suitable pair of tangents can be determined from four neighboring points around the marker, taken along directions
normal to the link connecting the solid boundary node and the surface marker point, as illustrated in Fig. 3. In this case,
the marker point lies along the x axis and suitable neighboring points can be found along the y and z directions. Fig. 3 illus-
trates the search for a single neighbor in the positive y direction, checking the state of grid points around the marker. For
example, if the nodes directly above it (nodes c and d) are solid, then there is a surface marker (1) somewhere along the link
b � d, which is taken as the neighbor. On the other hand, if c is solid and d is fluid the surface intersects with c � d and point 2
is taken. A different algorithm is used for d < 0.5Dx and d > 0.5Dx, which avoids using two nearby points to compute a tan-
gent. The complete algorithm is described in the flow chart shown in Fig. 4.

The neighboring point in the negative y direction is found in a similar fashion. Three markers, d � a � b in Fig. 5, are used
to determine a tangent at the marker point a, by fitting a circle to their positions. The process is repeated for neighbors in the
remaining (z) direction, which in Fig. 5 is the point c and an unseen point in front. Finally the vector product of the tangents is
taken to obtain the normal at a. The method is robust; it always finds neighboring points, regardless of the configuration of
solid and fluid nodes. This is advantageous when the geometry is highly irregular.
b
δ

c

1

4
5

e d

f

2

a

3

δ

δ > 0.5Δ

f

ed c

b
a
5

4

32

1

δ < 0.5Δx x

y

x

Fig. 3. Construction of a surface tangent at the marker point (solid diamond) defining the intersection of the surface with the grid line (x direction)
connecting the fluid point b (open circle) with the solid boundary point a (filled square). The figure illustrates the method for finding a single neighbor in the
positive y direction from the five candidate locations (open diamonds), depending on the state of the nodes c � f (fluid or solid). Cases where d < 0.5 and
d > 0.5 are treated separately, to avoid using nearby points.

1 1
No

2

4

δ > 0.5δ < 0.5

No

2

YesYes

No
3

Yes

No

Yes

4

No

5

Yes

Yes

Yes

No

No
3

No

Yes

5

c = fl

e = fl

f = fl

d = fl c = sl

d = sl

e = sl

f = sl

Fig. 4. Neighbor-finding algorithm illustrated in Fig. 3. The flowchart describes the algorithm for finding a single neighbor in the positive y direction from
the five candidate locations, depending on the state of the nodes c � f; fluid (fl) or solid (sl). Cases where d < 0.5 and d > 0.5 are treated separately.

x

y
zb

c

a
d

Fig. 5. Construction of local tangents. The figure shows two grid cells containing solid boundary nodes (solid squares) and surface markers (solid
diamonds). The surface normals at the marker points, pointing into the fluid, are indicated by arrows.

6454 D. Yu, A.J.C. Ladd / Journal of Computational Physics 229 (2010) 6450–6465
2.3. Moving the marker points

Erosion of the surface is described by motion of the marker points. In a small time increment, Dt, a marker moves a dis-
tance vDt in the direction of the surface normal:

Fig. 6.
compri
give the
Howeve

D. Yu, A.J.C. Ladd / Journal of Computational Physics 229 (2010) 6450–6465 6455
v ¼ maqRðc0Þ
mslcsl

n; ð6Þ
here maq and msl are the stoichiometric numbers in the aqueous and solid phases, and csl is the concentration in the solid phase
[23]. The concentration at the marker point is determined from the boundary conditions on the convection–diffusion equa-
tion, (4); details of the implementation of the boundary condition are given in Section 2.6. Since there is a wide variation in
erosion rates, we have found it more efficient to set a maximum erosion depth for each cycle and then determine the cor-
responding Dt.

After the markers have moved, a representation of the surface around each marker point is needed to calculate the inter-
sections of this new surface with the grid lines (Fig. 6). A C1 continuous Bézier surface can be constructed around a central
point from four neighboring markers and normals. The neighboring markers found during the construction of the surface
normal (Fig. 5) are reused, but in their new positions; three of the four neighboring points of marker a are shown in
Fig. 6 (b, c, d) in new locations. Since the markers move along the direction of the surface normals, we keep the previously
computed normals.

Fig. 6 illustrates the calculation of a new intersection point (open diamond) of an existing marker, a, which lies along a
grid line parallel to the z axis. The marker point and two of its neighbors (for example abc or acd) are projected onto the xy
plane (normal to the grid line) and their locations in the plane are used to calculate the barycentric coordinates u, v, and w for
that triangle [33]. Then it is straightforward to tell if the grid line intersects the triangle; in Fig. 6 it intersects with abc. The
new position of the marker is then calculated from the Bézier function of that triangle [33]:
Pðu;v ;wÞ ¼ b3;0;0u3 þ b0;3;0v3 þ b0;0;3w3 þ 3 b2;1;0u2v þ b2;0;1u2wþ b0;2;1v2wþ b1;2;0v2uþ b1;0;2w2uþ b0;1;2w2v
� �

þ 6uvw
v2w2b1

1;1;1 þw2u2b2
1;1;1 þ u2v2b3

1;1;1

v2w2 þw2u2 þ u2v2

 !
: ð7Þ
The parameters b3,0,0, b0,3,0, and b0,0,3 are the heights of the three vertexes a,b, and c above the plane on which the Bézier
triangle is constructed. The parameters b2,1,0, b2,0,1, b1,2,0, b1,0,2, b0,2,1, and b0,1,2 are derived from the slope of the tangent plane
at each vertex [33]. The remaining coefficients, b1

1;1;1, b2
1;1;1, and b3

1;1;1 are chosen to satisfy C1 continuity along the edges of the
triangle [33].

The new marker positions may indicate a change in the state of a grid node. For example, the fluid node p in Fig. 6 is con-
verted from a solid boundary node (Fig. 5) by the motion of the marker (a). The distance of each marker from its solid bound-
ary node must therefore be checked after it has moved. A negative distance indicate that the solid boundary node has been
converted to a fluid node by the erosion process. Precipitation can cause the reverse transition, a fluid node to a solid bound-
ary node, which is indicated by a distance larger than Dx. When there is a change of state, as in Fig. 6, some markers may be
deleted and others added. For example, if the node q remains solid then a new surface marker will be needed along the line
d

a

c

b

q
p

z

x

y

Reconstruction of surface markers. After erosion, the surface markers (solid diamonds) move to new positions. Two of the four triangles (abc and acd)
sing the local Bezier surface around marker point a are shown; the other two are in front. Intersections between the Bezier surfaces and the grid lines

new positions of the boundary node markers. The motion of marker a has created a new fluid node, p, and several new surface points (not shown).
r, only the new location (open diamond) of an existing marker is calculated from the Bézier surface.

6456 D. Yu, A.J.C. Ladd / Journal of Computational Physics 229 (2010) 6450–6465
p � q. After reassigning the state of all the affected grid nodes, excess markers are removed and new markers are added. The
position of the new marker along the grid line can usually be found by interpolation from neighboring points, for example a
and b in the case of the marker along p � q. We use cubic interpolation, in this case along a curve in the xz plane, including
information from the surface normals at the neighboring markers. If the local curvature is large, it is possible that there is no
pair of coplanar neighbors; in this case the new marker is placed at the half-way position.

The algorithm to move the markers requires only four neighboring points to determine the local Bézier surface. Since the
motion is along the direction of the surface normal, it is rare that the markers move outside the Bézier surface, but in regions
of high curvature this does occasionally happen. The algorithm is made more robust by constraining the maximum distance
that any marker can move, typically to less than 0.1Dx. The computational efficiency can be improved by making several
updates of the boundary markers without recomputing the flow and concentration fields, but keeping the erosion rate at
each marker point fixed. In cases where new markers are introduced the erosion rate is calculated by interpolation. The dis-
tance the surface can move between cycles of flow and transport is then limited only by the rate at which the surface con-
centrations are changing and not by the limitations of the surface-update algorithm.

Alternatively, marching cubes [34,32] could be used to construct a globally self-consistent, triangulated surface at every
iteration [35]. Tangents, normals and Bézier surfaces could be constructed as described above, but ensuring that all intersec-
tions are found would require a more extensive neighbor search, as well as the overhead from the marching cube algorithm.
We have implemented the marching cube algorithm, although at present it is used only to calculate local fluid fractions, as
described in Section 3.1.

2.4. Lattice-Boltzmann method

In the lattice-Boltzmann (LB) model, the fluid degrees of freedom are represented by a discretized one-particle velocity
distribution function ni(r,t), which describes the mass density of particles with velocity ci at the lattice position r and time t.
The hydrodynamic fields, mass density q, momentum density j = qu, and momentum flux P are moments of this velocity
distribution:
q ¼
X

i

ni; j ¼
X

i

nici; P ¼
X

i

nicici: ð8Þ
The time evolution of ni(r,t) is described by a discrete analogue of the Boltzmann equation [36]:
ni r þ ciDt; t þ Dtð Þ ¼ niðr; tÞ þ Di nðr; tÞ½ �; ð9Þ
where Di is the change in ni due to instantaneous collisions at the lattice nodes and Dt is the time step. We used the D3Q19
model [37], with the usual equilibrium distribution:
neq
i ðq;uÞ ¼ aciq 1þ u � ci

c2
s
þ uu : ðcici � c2

s 1Þ
2c4

s

� �
; ð10Þ
and weights:
a0 ¼ 1
3
; a1 ¼ 1

18
; a

ffiffi
2
p
¼ 1

36
: ð11Þ
The speed of sound cs = 3�1/2Dx/Dt, where D x is the lattice spacing.
A multi-relaxation-time (MRT) collision operator [18,38] was implemented by expanding the non-equilibrium distribu-

tion, nneq
i ¼ ni � neq

i , in tensorial polynomials of ci:
mk ¼
X

i

nneq
i eki: ð12Þ
We use a different basis (ek) from Refs. [18,38], such that the back transformation includes the weights aci [39]:
ni ¼ aci
X

k

w�1
k ekimk; ð13Þ
where wk ¼
P

ia
ci e2

ki is the normalizing factor for ek. The non-equilibrium moments mk relax towards equilibrium (zero), with
a post-collision value:
mH

k ¼ ckmk: ð14Þ
A two-parameter collision operator was used, with different eigenvalues for the modes with odd and even powers of ci

[40]. The shear viscosity is related to the eigenvalue (c) of the even modes:
g ¼ qc2
s h

2
1þ c
1� c

� �
; ð15Þ
while the odd (c
0
) eigenvalue is chosen so as to make the location of a planar solid boundary independent of c [39,40]:

Fig. 7.
labeled

D. Yu, A.J.C. Ladd / Journal of Computational Physics 229 (2010) 6450–6465 6457
c0 ¼ �7cþ 1
cþ 7

: ð16Þ
Linear interpolation [41,42] was used to improve the accuracy of the solid–fluid boundary condition, which requires the
distance from the solid node to the surface marker, shown as d in Fig. 1. The set of distances d uniquely define the solid sur-
face, without requiring information about the connectivity or shape of the surface. The boundary conditions for each pop-
ulation density, ni, can then be enforced based solely on the value of d, with no other information required. This is an
important advantage of LB methods over conventional CFD for flow in porous media and one of the reasons for its growing
popularity.

2.5. Finite-difference method for scalar transport

Numerical methods for solving the scalar transport equation, Eq. (3), have been extensively studied in the literature,
including finite volume, finite-difference, and finite elements [43]. The focus of those methods has been on deriving high-
order schemes and avoiding oscillations near boundaries. However, in simulations of porous media, the wide range of length
scales implies that there are only a few grid points between opposing surfaces; moreover the irregular geometry means that
the fluid flow will not be aligned with the grid. In this work we have adopted a low-order finite-difference scheme, with the
aim of moderate fidelity, robustness, and simplicity.

In a discretized Cartesian grid, the convection term is usually calculated in each coordinate direction separately, and the
individual fluxes are then added together. For example, in two dimensions, the partial differential equation:
otc þ uxoxc þ uyoyc ¼ D o2
x c þ o2

y c
� �

; ð17Þ
is solved on a 5-point template using either upwind or centered differencing for the convective flux (depending on the local
grid Péclet number) and centered differences for the diffusive flux. However, numerical results (see Section 3.2) show that
when the flow is not aligned with the grid there are large errors in the concentration field, particularly if there are source
terms in the computational domain. Here, we present a simple algorithm for the convective flux, which leads to much better
accuracy than the standard template when the grid is coarse.

The key idea is to calculate the derivative of the concentration along the direction of the local velocity (or characteristic),
as illustrated in Fig. 7. The concentrations are found by interpolation to locations c+ and c� that lie along the direction of u.
Then the convective flux is obtained from a single one-dimensional finite-difference. For a centered difference:
u � $c ¼ juj cþ � c�
d

; ð18Þ
while for an upwind scheme:
u � $c ¼ 2juj c0 � c�
d

: ð19Þ
The code switches from a centered difference to an upwind difference at a grid Péclet number, Pec = jujh/D, of approxi-
mately 30. We have implemented both local and global criteria for upwind differencing. In general we found that a global
criterion leads to faster convergence of the iterative (successive over-relaxation) concentration solver, and was used in pref-
erence to the local one.
x

y

−c

u

d

p

q

s

0

c

c

+

r

Calculation of the convective flux by differencing along the flow direction. In a two-dimensional geometry, the concentrations at the grid points
p, q, r, and s are linearly interpolated to obtain the concentrations c+ and c�.

6458 D. Yu, A.J.C. Ladd / Journal of Computational Physics 229 (2010) 6450–6465
In the two-dimensional example in Fig. 7, the interpolated concentration c� can be found from the concentrations at r and
s. In three dimensions, the first intersection of the velocity vector with the planes containing the grid lines is found. Then, the
concentration at the intersection point is determined by two-dimensional interpolation, using the triangle of grid points sur-
rounding the intersection. Near the solid surface one or more of these points may be missing, and in such cases we take the
concentration from the nearest grid point. Since the fluid velocity is largely parallel to the solid surface, such intersections
are rare. Moreover, the flux near the surface is diffusion dominated, so the loss of accuracy is not significant. Numerical re-
sults in Section 3.2 show that this scheme has much better accuracy than the standard Cartesian template.

2.6. Surface concentration

The boundary conditions at the reactive surfaces are implemented by balancing the diffusion of reactant towards the sur-
face with the consumption of reactant by the dissolution kinetics, as indicated in Eq. (4). Since the solid–fluid boundary is not
generally coincident with a grid point, we construct a virtual node (A) at a distance d from each surface marker, in the direc-
tion normal to the solid–fluid surface; the basic idea is illustrated in Fig. 8. The boundary condition, Eq. (4), can then be
approximated by a first-order finite-difference:
Fig. 8.
(20), to
D
cA � c0

d
¼ Rðc0Þ; ð20Þ
where c0 is the (unknown) concentration at the surface marker. Given the concentration at A and the kinetic rate law, R(c0),
we can solve for the surface concentration, c0 and the erosion flux R(c0). For linear kinetics, Eq. (5):
c0 ¼
dkcsat þ DcA

dkþ D
; ð21Þ
but in general c0 must be determined from an iterative solution of Eq. (20).
The value of the concentration at A is found by interpolation, using the surface normal at the marker point (Section 2.2) to

place the point A at a fixed distance d from the surface; typically d is comparable to the grid spacing used in the concentra-
tion solver. If the point A lies inside a tetrahedron with four fluid vertexes, trilinear interpolation is used to determine the
concentration at A. Otherwise, the concentration is taken from the nearest fluid point. This scheme avoids instabilities when
a surface marker is very close to a fluid grid point and leads to robust and accurate predictions of the surface concentration
(see Section 3.2). Using the surface normal and concentration, the erosion velocity, Eq. (6) can be determined, and the surface
markers updated (Section 2.3).

2.7. Code parallelization

Modeling erosion or deposition in fractures and other porous media requires three different code modules: flow solver,
concentration solver, and geometry update. We have implemented a three-dimensional domain decomposition for each of
the modules independently. For the flow solver, information from the neighboring layer of the coarse grid must be passed to
the adjacent processor. In Fig. 9, LB population densities from layer L1 in processor P1 are passed to processor P2. Similarly
the concentrations in layer L2 must be passed to P2 as well. However, in some instances two layers of concentrations must be
solidfluid

d
A

r

p q

Calculation of surface concentrations. The concentration at the surface markers (diamonds) is obtained from a finite-difference approximation, Eq.
the boundary condition, Eq. (4). The concentration at A is obtained by interpolation.

Boundary
Processor

P2P1

solid

fluid

A

L1 L2
conc. & geom.

flow

q
p

ga

Fig. 9. Example of domain decomposition in the flow and concentration solvers. The coarse mesh of the flow solver is shown by solid lines and the finer grid
of the concentration solver is shown by dashed lines.

D. Yu, A.J.C. Ladd / Journal of Computational Physics 229 (2010) 6450–6465 6459
passed. The solid boundary node g in the center of Fig. 9 belongs to both processors and thus the marker point a must be
updated in both domains. Determining the concentration at the point A may require concentrations from the layer L1 as well
as L2 so both must be passed.

In addition to the flow and concentration fields, geometric information must be communicated as well. This includes the
location of the solid boundary nodes on the grid, the position of the surface markers with respect to the solid boundary
nodes, and the normals at the marker points. In some instances geometric information must be passed from L1 as well as
from L2 (Fig. 9). For example, the surface normal at the point a is calculated in both P1 and P2; the marker point p is therefore
needed in both domains, since the nearer marker is too close for an accurate calculation of the normal (see Fig. 4, d > 0.5).
Thus, boundary node data structures from L1, node q in this case, must be communicated as well as those from L2.

3. Numerical results

In this section we present numerical tests of the individual components; flow solver, concentration solver and geometry
update. Finally the convergence of the whole simulation is examined in a complex, time-dependent topography.

3.1. Permeability of a random array of spheres

The convergence of the flow solver has been tested in a fixed but complex geometry, presented by a dense random pack of
spheres. We have calculated the permeability of a single configuration of 108 identical spheres in a periodic unit cell of
length L = 10a, where a is the particle radius. We used four different resolutions with radii a = 2Dx, 4Dx, 8Dx, and 16Dx.
An interpolated boundary condition [42] was used to obtain a second-order flow field throughout the domain.

The permeability is computed from the steady-state volumetric flow rate Qx, driven by a uniform body force density
fx � � ox p:
j ¼ Q xg
Afx

; ð22Þ

6460 D. Yu, A.J.C. Ladd / Journal of Computational Physics 229 (2010) 6450–6465
where g is the fluid viscosity and A = L2 is the cross sectional area. Two different methods were used to calculate volumetric
flow rate. In the simpler method, the flux in the x-direction is calculated by summing the velocity over all the grid points in
each yz plane:
Fig. 11
radius a
which u
QxðxÞ ¼
X
y;z

vxðx; y; zÞDx2: ð23Þ
The overall permeability is obtained from the average flow rate over the whole volume.
The total volumetric flux through each yz plane should be the same in an incompressible flow, but in an irregular geom-

etry the effective cross-sectional area associated with each grid point must be taken into account. A two-dimensional exam-
ple can be used to indicate a more accurate calculation of the flux in a single volume element. In Fig. 10, the cell is cut by a
solid body in the lower-right corner. The fluid portion of the cell is then divided into three triangles. In each triangle, the areal
flux is calculated using following equation:
q
M
¼ v1 þ v2 þ v3

3
SM
Dx

; ð24Þ
where v1, v2, and v3 are the velocities at the three vertexes of a triangle and SM is the area of the triangle. In three dimensions,
the triangles are replaced by tetrahedra, and the surface area SM in Eq. (24) is replaced by the volume of the tetrahedron. The
total volumetric flux Qx(x + Dx/2) is obtained by summing over all the tetrahedra in cells lying between the planes x and
x + Dx. The marching cube scheme [34] was used to construct the solid surface and the volume within each cell was then
partitioned into tetrahedra. It should be noted that the configuration is not uniquely defined by a given set of marker points.

The variations in Qx(x) are shown in Fig. 11a for moderately sized spheres, a = 8Dx. In the first case (M1), Eq. (23), the
effective cross-sectional area associated with each grid point has been ignored and the fluctuations in Qx are large, but when
a c

d

eb

Fig. 10. Triangulation of a partially filled fluid cell.

x/

Q
x

0 20 40 60 800.15

0.20

0.25

0.30
M1
M2

Δ

xΔ

/Δ
x3

t

a/
0 5 10 150.01

0.02

0.03
M1
M2
Ref.

κ
/a

2

Δx

. The permeability of a dense pack of spheres in a cubic unit cell. In the left panel the flux, Qx(x), is shown as a function of position for spheres of
= 8Dx. In the right panel the average flux, Qx /

P
xQxðxÞ, is used to determine the permeability j, Eq. (22). The solid line is the reference calculation,

ses a multipole expansion of the Green’s function for Stokes flow [44].

D. Yu, A.J.C. Ladd / Journal of Computational Physics 229 (2010) 6450–6465 6461
the flow is summed over the individual tetrahedra (M2) the flux is much smoother. Moreover, the permeability obtained
from the average Qx is then almost independent of grid resolution, even for the smallest spheres, a = 2Dx (Fig. 11b). The per-
meability agrees to within 1.5% with a highly accurate multipole solution of the same problem, derived from the methods
described in Ref. [44]; a large number of multipoles, up to order 15, were used to ensure convergence of the final result. The
small discrepancy between the multipole and LB results can be explained by the tetrahedral decomposition of the fluid vol-
ume, which replaces the curved surface of the spheres by planes. These inevitably cut into the convex surface of the sphere
(Fig. 10), and slightly increase the fluid volume. On the other hand, a direct average of the velocity over the grid points (M1)
produces an inaccurate permeability, even though the underlying flow field is the same as in M2. Large spheres a > 10D x are
needed to get the permeability within 10%. These results emphasize the importance of accounting for local variations in
porosity when calculating permeabilities from lattice-Boltzmann or other grid-based methods.
3.2. Concentration field in an angled channel

The concentration solver proposed in Sections 2.5 and 2.6 was tested by numerical simulations of a channel flow with
chemically reacting boundaries. To increase the complexity of the problem, the channel was sometimes angled with respect
to the underlying computational grid, as illustrated in Fig. 12. The width of the channel, H = 10.02Dx, was deliberately chosen
to be a non-integer multiple of the grid spacing, so as to sample a range of distances between marker points and their solid
boundary nodes, 0 < d < Dx (Fig. 1).

A linear kinetic model, Eq. (5), was used to describe the dissolution at the boundaries, with a rate constant adjusted so
that the Damköhler number, Da ¼ k=�u ¼ 0:08, where �u is the mean fluid velocity. The flow was driven by a uniform force
density and characterized by a Péclet number Pe ¼ �uH=D ¼ 125, where H is the width of the channel; periodic boundary con-
ditions were applied in the flow direction. The concentration field was generated by a circular source:
dc
dt
¼ 2:5 � 10�4ð1� rÞcsat=Dt; r 6 0:3H

0:0; r > 0:3H;

()
ð25Þ
placed in the center of the channel.
The concentration flux at a marker point, Eq. (20), is calculated from a finite-difference with the concentration at a fixed

distance d along the outward normal from the marker (see Section 2.6 and Fig. 8). A comparison of the surface concentration
with a highly resolved solution from the NAG library [30] is shown in Fig. 13a; in this case the channel was aligned with the
grid. The distance l along the boundary is measured from the projection of the center of the source onto the boundary sur-
face. The surface concentrations for d = Dx and d = 0.5Dx are very similar and show a small 2% deviation from the reference
solution, which is quite acceptable given the relatively coarse resolution (h � 10Dx). However, when the distance is too
small, d = 0.1Dx, there are larger errors in the concentration profile. In all the remaining calculations d = Dx.

In an angled channel (slope = 0.5), we found that the standard template (D1), Eq. (17), leads to large errors in the concen-
tration field, Fig. 13b. Moreover, there is an entirely unphysical asymmetry between the concentration at the upper and
lower surfaces. We traced the error to the calculation of the convective flux and then replaced the standard five-point tem-
plate with a one-dimensional flux calculated directly along the direction of the local velocity, Eq. (18) (centered) or Eq. (19)
(upwind). The code makes the transition from centered to upwind differencing at a local Péclet number Pe = 30. Fig. 13b
shows that the new template, illustrated in Fig. 7, gives a much more accurate solution, again within about 2% of the
fluid

solid

solid

Fig. 12. Geometry of the angled channel.

l/

c/
c s

0 50 100 1500

0.001

0.002

0.003

d = 0.1
d = 0.5
d = 1.0
NAG

Δx

Δ x

xΔ
xΔ

(a)
l/

c/
c s

0 50 100 1500

0.001

0.002

0.003

D1 lower
D1 upper
D2 upper & lower
NAG

Δx
(b)

Fig. 13. Surface concentrations in a channel flow compared with a reference solution [30]; the distance l is measured in the flow direction from the center of
the source. (a) Different values of the distance, d (Fig. 8). (b) Comparison of a standard finite-difference template (D1), Eq. (17), with differencing along the
local flow direction, Eqs. (18) and (19) (D2).

6462 D. Yu, A.J.C. Ladd / Journal of Computational Physics 229 (2010) 6450–6465
reference calculation, and is symmetric at the upper and lower surfaces. This local differencing scheme seems to eliminate
the artifacts associated with the calculation of a convective flux on a square grid and is useful in complex geometries such as
porous media.

3.3. Testing the geometry update

The algorithm for moving the surface markers has been tested by simulating the uniform contraction of a sphere of radius
a = 8.5Dx. The initial marker positions were obtained from the intersections of the sphere surface with the links. The sphere
was then contracted at a constant velocity, so its exact radius was known at every time step. The position of each marker was
updated by a displacement along its normal direction �vdt, where v is the speed of contraction. The surface normals were
computed using the algorithm described in Section 2.2. In Fig. 14 the L2 norm of the error in the surface position:
L2 ¼

ffiP
mða� rmÞ2

Na2

s
; ð26Þ
is shown for two different velocities, v = 0.01Dx/Dt and v = 0.1Dx/Dt; here N is the total number of markers, a is the (time-
dependent) radius of sphere, and rm is the distance of the marker from the origin.

The relative error in the marker position is roughly proportional to the square of the curvature, C = Dx/a, as shown in
Fig. 14. At the final stage, a = 2.5Dx the curvature is high, C = 0.4, yet the relative error in the marker position is only 2%.
In addition to the curvature-dependent error, motion of the grid introduces an additional error that depends on the rate
of contraction. These fluctuations are roughly proportional to velocity, but are not cumulative. Thus if a certain degree of
raggedness in the short-time motion of the surface is acceptable, it can be moved at quite large velocities, of the order of
0.1Dx/Dt.
L

0.05 0.1 0.150

0.01

0.02

0.03

Δx /a

2

2 2

Fig. 14. The L2 norm or the error in the marker positions on a moving spherical surface.

Fig. 15. Depth-averaged concentration fields at three different resolutions for dissolution at Pe = 10, Da = 10.

D. Yu, A.J.C. Ladd / Journal of Computational Physics 229 (2010) 6450–6465 6463
3.4. Convergence tests for dissolution simulations

The convergence of the entire algorithm was investigated by simulating dissolution inside an artificial fracture, made up
of a narrow channel 200 � 400 � 3 with small (3 � 3) obstacles randomly placed to block the flow [23]. The porosity of the
fracture was approximately 50%. The computational domain was constructed by adding two more layers of solid above and
below the fracture, to allow for dissolution, and insoluble inlet and outlet manifolds of length 7 units at the ends of the frac-
ture. The geometry was mapped onto the computational grid using three different resolutions, Dx = 1 (214 � 400 � 7), Dx = 2
(428 � 800 � 14), and Dx = 4 (856 � 1600 � 28). The flow and concentration solvers used the same resolution in these tests.

A uniform force density (constant pressure gradient) was used to generate a flow field with an initial Péclet number
Pe ¼ �u�h0=D ¼ 10, and the reaction rate was chosen so that the initial Damköhler number Da ¼ k=�u ¼ 10; here �h0 ¼ 1:5 is
the mean aperture of the initial fracture. The fracture is filled with a saturated solution, c = 1, and undersaturated fluid,
c = 0.1, is released along a yz plane in the center of the inlet manifold, x = 3.5. Periodic boundary conditions on the flow
and concentration fields were applied in the flow (x) direction. The small amount of erosion at the outlet is due to diffusion
of concentration across the boundary, counter to the flow.

Fig. 15 shows the depth-averaged concentration field:
cavðx; yÞ ¼
1

hðx; yÞ

Z
cðx; y; zÞdz; ð27Þ
at the time where the increase in mean aperture D�h ¼ 0:5�h0. The erosion patterns are qualitatively similar in all three cases,
despite the very coarse resolution in case (a), where there are only three grid points across the channel. A more detailed
examination reveals that there are noticeable differences between the concentration fields in (a) and (b). The leading channel
is somewhat shorter in the coarser simulation and the active channel at y � 60 in (a) has been replaced by an active channel
at y = 80 in (b). The concentration fields in (b) and (c) are essentially identical. Thus although there are small differences in
the three-dimensional fields, the key geophysical features of fracture dissolution are well represented with only �5 grid
points across the channel.
4. Conclusions

In this paper a hybrid lattice-Boltzmann/finite-difference scheme for dissolution in fractured and porous media has been
described. Bézier polynomials were used to construct a piecewise C1 continuous surface, which is robust in complex topog-
raphies. A standard MRT lattice-Boltzmann method with interpolated boundary conditions was used to solve for the flow
field at each iteration. However, in the absence of an upwind differencing scheme, LB methods are limited in the range of
grid Péclet numbers that can be accessed, and we therefore used a finite-difference method for the concentration field. Nev-
ertheless, we found it useful to borrow the idea of advection along characteristics from the LB methodology; this allowed for
a much more accurate convective flux in complex topographies when the flow field does not follow the grid lines.

Numerical results were presented to validate the numerical algorithms. It was shown that the flow solver leads to accu-
rate permeabilities if the local porosity is properly accounted for. We found that when the flow has a substantial normal
component towards a nearby surface, the standard finite-difference templates for the convective flux lead to highly inaccu-
rate results. An alternative differencing scheme, based on the local flow velocity, was shown to lead to good agreement with
a reference calculation. A simple numerical example was used to demonstrate the fidelity of the method we used to move

6464 D. Yu, A.J.C. Ladd / Journal of Computational Physics 229 (2010) 6450–6465
the marker points. Finally we showed that there is good overall convergence of the erosion patterns in a complex porous
topography.

The algorithms presented in this paper can be used to simulate dissolution in laboratory scale samples, where the sample
dimensions are typically of the order of 10 � 10 cm, with a mean aperture of approximately 0.1 mm [45]. Based on the re-
sults presented in Section 3.4, we would expect satisfactory dissolution patterns with about four grid points across the aper-
ture in the flow solver and eight in the concentration solver. The sample volume would then contain about 107 LB grid points
and about 108 grid points for the concentration solver. Such systems easily fit within the memory of a small cluster, including
the memory required to store the surface information. In fact we have previously made such simulations on a single work-
station, although using a stochastic simulation for the reactant transport [21]. Extensions to the field scale, say 1 � 1 m,
should be possible on a supercomputer (>104 processors).

Acknowledgments

This work was supported by the US Department of Energy, Chemical Sciences, Geosciences and Biosciences Division,
Office of Basic Energy Sciences (DE-FG02–98ER14853). We thank Elek Wajnryb (Institute of Fundamental Technological
Research, Polish Academy of Sciences, Warsaw, Poland) for providing the multipole code used to calculate the reference
solution in Section 3.1.

References

[1] K.T.B. MacQuarrie, K.U. Mayer, Reactive transport modeling in fractured rock: a state-of-the-science review, Earth Sci. Rev. 72 (2005) 189–227.
[2] C.I. Steefel, Geochemical kinetics and transport, in: S.L. Brantley, J.D. Kubicki, A.F. White (Eds.), Kinetics of Water-Rock Interaction, Springer, New York,

2007, pp. 545–589.
[3] B. Cailly, P.L. Thiez, P. Egermann, A. Audibert, S. Vidal-Gilbert, X. Longaygue, Geological storage of CO2: a state-of-the-art of injection processes and

technologies, Oil Gas Sci. Technol. 60 (2005) 517–525.
[4] J. Ennis-King, L. Paterson, Coupling of geochemical reactions and convective mixing in the long-term geological storage of carbon dioxide, Int. J. Green

Gas Cont. 1 (2007) 86–93.
[5] M.L. Hoefner, H.S. Fogler, Pore evolution and channel formation during flow and reaction in porous media, AIChE J. 34 (1988) 45–54.
[6] J. Siemers, W. Dreybrodt, Early development of karst aquifers on percolation networks of fractures in limestone, Water Resour. Res. 34 (1998) 409–419.
[7] R.B. Hanna, H. Rajaram, Influence of aperture variability on dissolutional growth of fissures in karst formations, Water Resour. Res. 34 (1998) 2843–

2853.
[8] F. Golfier, C. Zarcone, B. Bazin, R. Lenormand, D. Lasseux, M. Quintard, On the ability of a Darcy-scale model to capture wormhole formation during the

dissolution of a porous medium, J. Fluid Mech. 457 (2002) 213–254.
[9] C. Cohen, D. Ding, M. Quintard, B. Bazin, From pore scale to wellbore scale: impact of geometry on wormhole growth in carbonate acidization, Chem.

Eng. Sci. 63 (2008) 3088–3099.
[10] W. Cheung, H. Rajaram, Dissolution finger growth in variable aperture fractures: role of the tip-region flow field, Geophys. Res. Lett. 29 (2002) 2075.
[11] S. Békri, J.-F. Thovert, P.M. Adler, Dissolution of porous media, Chem. Eng. Sci. 50 (1995) 2765–2791.
[12] S. Békri, J.-F. Thovert, P.M. Adler, Dissolution and deposition in fractures, Eng. Geol. 48 (1997) 283–308.
[13] R. Verberg, A.J.C. Ladd, Simulation of chemical erosion in rough fractures, Phys. Rev. E 65 (2002) 056311.
[14] Q.J. Kang, D.X. Zhang, S.Y. Chen, Simulation of dissolution and precipitation in porous media, J. Geophys. Res. 108 (2003) B102505.
[15] Q.J. Kang, P.C. Lichtner, D.X. Zhang, An improved lattice Boltzmann model for multicomponent reactive transport in porous media at the pore scale,

Water Resour. Res. 43 (2007) W12S14.
[16] Q.J. Kang, P.C. Lichtner, H.S. Viswanathan, A.I. Abdel-Fattah, Pore scale modeling of reactive transport involved in geologic CO2 sequestration, Transport

Porous Med. 82 (2010) 197–213.
[17] R. Verberg, A.J.C. Ladd, Lattice-Boltzmann model with sub-grid scale boundary conditions, Phys. Rev. Lett 84 (2000) 2148–2151.
[18] D. d’Humières, I. Ginzburg, M. Krafczyk, P. Lallemand, L.S. Luo, Multiple-relaxation-time lattice Boltzmann models in three dimensions, Philos. Trans. R.

Soc. Lond. A 360 (2002) 437–451.
[19] P. Szymczak, A.J.C. Ladd, Boundary conditions for stochastic solutions of the convection–diffusion equation, Phys. Rev. E. 68 (2003) 036704.
[20] P. Szymczak, A.J.C. Ladd, Stochastic boundary conditions to the convection–diffusion equation including chemical reactions at solid surfaces, Phys. Rev.

E. 69 (2004) 036704.
[21] P. Szymczak, A.J.C. Ladd, Microscopic simulations of fracture dissolution, Geophys. Res. Lett. 31 (2004) L23606.
[22] P. Szymczak, A.J.C. Ladd, A network model of channel competition in fracture dissolution, Geophys. Res. Lett. 33 (2006) L05401.
[23] P. Szymczak, A.J.C. Ladd, Wormhole formation in dissolving fractures, J. Geophys. Res. 114 (2009) B06203.
[24] P.B. Warren, Electroviscous transport problems via lattice-Boltzmann, Int. J. Mod. Phys. C 8 (1997) 889–898.
[25] I. Rasin, S. Succi, W. Miller, A multi-relaxation lattice kinetic method for passive scalar diffusion, J. Comp. Phys. 205 (2005) 451–462.
[26] I. Ginzburg, Equilibrium-type and link-type lattice Boltzmann models for generic advection and anisotropic-dispersion equation, Adv. Water Resour.

28 (2005) 1171–1195.
[27] J.A. Kaandorp, C.P. Lowe, D. Frenkel, P.M.A. Sloot, Effect of nutrient diffusion and flow on coral morphology, Phys. Rev. Lett. 77 (1996) 2328–2331.
[28] D. Yu, S.S. Girimaji, A.J.C. Ladd, Revised moment propagation method for scalar transport, Phys. Rev. E 78 (2008) 056706.
[29] M. Stiebler, J. Tölke, M. Krafczyk, Advection-diffusion lattice Boltzmann scheme for hierarchical grids, Comput. Math. Appl. 55 (2008) 1576–1584

(Mesoscopic Methods in Engineering and Science).
[30] NAG, NAG Fortran Library Manual, Mark 18, The Numerical Algorithms Group Limited, Oxford, 1997.
[31] S. Chen, G.D. Doolen, Lattice Boltzmann method for fluid flows, in: J.L. Lumley, M.V. Dyke, H.L. Reed (Eds.), Annual Review of Fluid Mechanics, vol. 30,

Annual Reviews Inc, Palo Alto, California, 1998, pp. 329–364.
[32] C. Montani, R. Scateni, A modified look-up table for implicit disambiguation of marching cubes, Visual Comput. 10 (1994) 353–355.
[33] T.N.T. Goodman, H.B. Said, A C1 triangular interpolant suitable for scattered data interpolation, Commun. Appl. Numer. M 7 (1991) 479–485.
[34] W.E. Lorensen, H.E. Cline, Marching cubes: a high resolution 3D surface construction algorithm, Comput. Graph. 21 (1987) 163–169.
[35] B. Ahrenholz, J. Tölke, M. Krafczyk, Lattice-Boltzmann simulations in reconstructed parametrized porous media, Int. J. Comput. Fluid D 20 (2006) 369–

377.
[36] U. Frisch, D. d’Humières, B. Hasslacher, P. Lallemand, Y. Pomeau, J.-P. Rivet, Lattice gas hydrodynamics in two and three dimensions, Complex Syst. 1

(1987) 649.
[37] Y.H. Qian, D. d’Humières, P. Lallemand, Lattice BGK models for the Navier–Stokes equation, Europhys. Lett. 17 (1992) 479–484.
[38] D. d’Humières, Generalized lattice Boltzmann equations, Prog. Astronaut. Aeronaut. 159 (1992) 450–458.

D. Yu, A.J.C. Ladd / Journal of Computational Physics 229 (2010) 6450–6465 6465
[39] B. Chun, A.J.C. Ladd, Interpolated boundary condition for lattice-Boltzmann simulations of flows in narrow gaps, Phys. Rev. E 75 (2007) 066705.
[40] I. Ginzburg, D. d’Humières, Multireflection boundary conditions for lattice Boltzmann models, Phys. Rev. E 68 (2003) 066614.
[41] M. Bouzidi, M. Firdaouss, P. Lallemand, Momentum transfer of a Boltzmann-lattice fluid with boundaries, Phys. Fluids 13 (2001) 3452–3459.
[42] D.Z. Yu, R.W. Mei, L.S. Luo, W. Shyy, Viscous flow computations with the method of lattice Boltzmann equation, Prog. Aerosp. Sci 39 (2003) 329–367.
[43] W. Shyy, Computational Modeling for Fluid Flow and Interfacial Transport, Elsevier, Amsterdam, The Netherlands, 1994.
[44] B. Cichocki, R.B. Jones, R. Kutteh, E. Wajnryb, Friction and mobility for colloidal spheres in Stokes flow near a boundary: the multipole method and

applications, J. Chem. Phys. 112 (2000) 2548–2561.
[45] R.L. Detwiler, R.J. Glass, W.L. Bourcier, Experimental observations of fracture dissolution: the role of Péclet number in evolving aperture variability,

Geophys. Res. Lett. 30 (2003) 1648.

	A numerical simulation method for dissolution in porous and fractured media
	Introduction
	A computational algorithm for dissolution
	Representing the solid–fluid interface
	Calculating the surface normals
	Moving the marker points
	Lattice-Boltzmann method
	Finite-difference method for scalar transport
	Surface concentration
	Code parallelization

	Numerical results
	Permeability of a random array of spheres
	Concentration field in an angled channel
	Testing the geometry update
	Convergence tests for dissolution simulations

	Conclusions
	Acknowledgments
	References

